Geoffrey Hinton

Results: 92



#Item
11

An efficient way to learn deep generative models Geoffrey Hinton Canadian Institute for Advanced Research & Department of Computer Science

Add to Reading List

Source URL: www.cs.nyu.edu

Language: English - Date: 2007-04-24 14:07:55
    12

    Generating Text with Recurrent Neural Networks Ilya Sutskever James Martens Geoffrey Hinton University of Toronto, 6 King’s College Rd., Toronto, ON M5S 3G4 CANADA

    Add to Reading List

    Source URL: machinelearning.wustl.edu

    Language: English - Date: 2013-03-25 14:58:55
      13

      Generating more realistic images using gated MRF’s Marc’Aurelio Ranzato Volodymyr Mnih Geoffrey E. Hinton Department of Computer Science

      Add to Reading List

      Source URL: papers.nips.cc

      Language: English - Date: 2014-02-24 04:02:36
        14

        LEARNING A BETTER REPRESENTATION OF SPEECH SOUND WAVES USING RESTRICTED BOLTZMANN MACHINES Navdeep Jaitly, Geoffrey Hinton Department of Computer Science, University of Toronto, Toronto, M5S 3G4, Canada ABSTRACT State of

        Add to Reading List

        Source URL: www.cs.toronto.edu

        Language: English - Date: 2011-03-01 16:21:12
          15

          Vocal Tract Length Perturbation for Speech Recognition with DNN-HMMs Navdeep Jaitly ● Geoffrey Hinton ●

          Add to Reading List

          Source URL: www.cs.toronto.edu

          Language: English - Date: 2013-08-04 22:13:51
            16Artificial neural networks / Statistics / Applied mathematics / Machine learning / Multinomial logistic regression / Restricted Boltzmann machine / Boltzmann machine / Latent Dirichlet allocation / Logistic function / Multimodal learning / Deep learning

            Modeling Documents with a Deep Boltzmann Machine Nitish Srivastava Ruslan Salakhutdinov Geoffrey Hinton

            Add to Reading List

            Source URL: www.cs.toronto.edu

            Language: English - Date: 2015-07-13 11:35:04
            17

            Network: Comput. Neural Syst–84. Printed in the UK PII: S0954-898XCascaded redundancy reduction Virginia R de Sa† and Geoffrey E Hinton

            Add to Reading List

            Source URL: www.cogsci.ucsd.edu

            Language: English - Date: 2004-10-12 04:02:02
              18

              MLSS Tutorial on: Deep Belief Nets (An updated and extended version of my 2007 NIPS tutorial) Geoffrey Hinton Canadian Institute for Advanced Research

              Add to Reading List

              Source URL: mlg.eng.cam.ac.uk

              Language: English - Date: 2009-09-09 11:16:30
                19Artificial neural networks / Restricted Boltzmann machine / Boltzmann machine / Autoencoder / Backpropagation / Feedforward neural network / Generative model / Connectionism / Supervised learning / Graphical model / Machine learning / Hidden Markov model

                Where do features come from? Geoffrey Hinton Department of Computer Science, University of Toronto 6 King’s College Rd, M5S 3G4, Canada February 18, 2013

                Add to Reading List

                Source URL: www.cs.toronto.edu

                Language: English - Date: 2015-07-13 11:50:55
                20

                Visualizing Similarity Data with a Mixture of Maps James Cook, Ilya Sutskever, Andriy Mnih and Geoffrey Hinton Department of Computer Science University of Toronto Toronto, Ontario M5S 3G4

                Add to Reading List

                Source URL: www.cs.toronto.edu

                Language: English - Date: 2007-03-17 14:47:00
                  UPDATE